新闻资讯

新闻资讯 行业动态

2020WWW系统论文合集(最新最全分类整理)

编辑:011     时间:2020-04-23

 1   摘要国际顶级学术会议WWW2020定在2020年4月20-24日于中国台湾举办。受COVID-19疫情影响(疫情赶紧过去吧),大会将在线上举行。今天是大会开始的第一天。本次会议共收到了1129篇论文投稿,录用217篇,录取率仅为19.2%。其中关于推荐系统的论文大约38篇,推荐系统占比17.5%,可见推荐系统的研究受到学术界的广泛关注。另外,值得注意的是,接收的推荐系统论文中大部分都是与工业界合作的产物,因此不管是学术界还是工业界,推荐系统都是研究的热点与重点。针对这38篇论文,我们进行了梳理分类,如下表所示


分类 数量
Practical RS 6
Sequential RS 6
Efficient RS
4
Social RS 3
General RS
3
RL for RS
3
POI RS
2
Cold Start in RS
2
Security RS
2
Fairness RS
2
Explianability for RS
2
Cross-domain RS
1
Knowledge Graph RS
1
Conversational RS 1
CTR for RS
1

可见,推荐系统应用的文章以及序列化推荐的文章占比较大;随后是提升推荐效率、社会化推荐、常规推荐以及利用强化学习推荐;其次是兴趣点推荐、冷启动问题研究、推荐系统中的安全性、推荐公平性以及可解释推荐的文章;最后是各有一篇跨域推荐、利用知识图推荐、对话推荐系统以及用于点击率预估的推荐。


 2   论文列表

1Practical RS
  • Graph Enhanced Representation Learning for News Recommendation
  • Weakly Supervised Attention for Hashtag Recommendation using Graph Data
  • Personalized Employee Training Course Recommendation with Career Development Awareness
  • Understanding User Behavior For Document Recommendation
  • Recommending Themes for Ad Creative Design via Visual-Linguistic Representations
  • paper2repo: GitHub Repository Recommendation for Academic Papers


2Sequential RS
  • Adaptive Hierarchical Translation-based Sequential Recommendation
  • Attentive Sequential Model of Latent Intent for Next Item Recommendation
  • Déjà vu: A Contextualized Temporal Attention Mechanism for Sequential Recommendation
  • Intention Modeling from Ordered and Unordered Facets for Sequential Recommendation
  • Future Data Helps Training: Modeling Future Contexts for Session-based Recommendation
  • Keywords Generation Improves E-Commerce Session-based Recommendation


3Efficient RS
  • Learning to Hash with Graph Neural Networks for Recommender Systems
  • LightRec: a Memory and Search-Efficient Recommender System
  • A Generalized and Fast-converging Non-negative Latent Factor Model for Predicting User Preferences in Recommender Systems
  • Efficient Non-Sampling Factorization Machines for Optimal Context-Aware Recommendation

4Social RS
  • Clustering and Constructing User Coresets to Accelerate Large-scale Top-K Recommender Systems
  • The Structure of Social Influence in Recommender Networks
  • Few-Shot Learning for New User Recommendation in Location-based Social Networks


5Explainability for RS
  • Directional and Explainable Serendipity Recommendation
  • Dual Learning for Explainable Recommendation: Towards Unifying User Preference Prediction and Review Generation


6POI RS
  • Next Point-of-Interest Recommendation on Resource-Constrained Mobile Devices
  • A Category-Aware Deep Model for Successive POI Recommendation on Sparse Check-in Data


7General RS
  • Efficient Neural Interaction Function Search for Collaborative Filtering
  • Learning the Structure of Auto-Encoding Recommenders
  • Deep Global and Local Generative Model for Recommendation


8Fairness in RS
  • Hierarchical Visual-aware Minimax Ranking Based on Co-purchase Data for Personalized Recommendation
  • FairRec: Two-Sided Fairness for Personalized Recommendations in Two-Sided Platforms


9RL for RS
  • Off-policy Learning in Two-stage Recommender Systems
  • Hierarchical Adaptive Contextual Bandits for Resource Constraint based Recommendation


10Cross-domain RS
  • Exploiting Aesthetic Preference in Deep Cross Networks for Cross-domain Recommendation


11Knowledge Graph RS
  • Reinforced Negative Sampling over Knowledge Graph for Recommendation


12Conversational RS
  • Latent Linear Critiquing for Conversational Recommender Systems


13CTR for RS
  • Adversarial Multimodal Representation Learning for Click-Through Rate Prediction


 3   官方Tutorial

最后,WWW2020还进行了两场关于推荐与搜索的Tutorial,分别是利用深度迁移学习的搜索与推荐和可信任的推荐与搜索系统,感兴趣的小伙伴可以学习一下。





郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

回复列表

相关推荐