Java中生成唯一ID的方法
有时我们不依赖于数据库中自动递增的字段产生唯一ID,比如多表同一字段需要统一一个唯一ID,这时就需要用程序来生成一个唯一的全局ID。
UUID
从Java 5开始, UUID 类提供了一种生成唯一ID的简单方法。UUID是通用唯一识别码 (Universally Unique Identifier)的缩写,UUID来源于OSF(Open Software Foundation,开源软件基金会)的DCE(Distributed Computing Environment,分布式计算环境)规范。UUID 的目的,是让分布式系统中的所有元素,都能有唯一的辨识资讯,而不需要透过中央控制端来做辨识资讯的指定。如此一来,每个人都可以建立不与其它人冲突的 UUID。
UUID是一个128bit的数字,也可以表现为32个16进制的字符(每个字符0-F的字符代表4bit),中间用"-"分割。
时间戳+UUID版本号: 分三段占16个字符(60bit+4bit),
Clock Sequence号与保留字段:占4个字符(13bit+3bit),
节点标识:占12个字符(48bit),
UUID的唯一缺陷在于生成的结果串会比较长。
public class GenerateUUID {
public static final void main(String... args) {
// generate random UUIDs
UUID idOne = UUID.randomUUID();
UUID idTwo = UUID.randomUUID();
log("UUID One: " + idOne);
log("UUID Two: " + idTwo);
}
private static void log(Object object) {
System.out.println(String.valueOf(object));
}
}
结果为
UUID One: 6b193443-b95d-4462-9902-a6455ebc56d6
UUID Two: 4ef9b375-839b-4150-8f31-1ed85fab63fd
随机数的哈希值
此方法使用SecureRandom和MessageDigest:
启动时,初始化SecureRandom (这可能是一个冗长的操作)
使用 SecureRandom生成一个随机数
创建一个MessageDigest,使用某种摘要算法
将MessageDigest返回的byte[]编码为某种可接受的文本形式
检查结果是否已经被使用;如果尚未使用,则适合作为唯一标识符
MessageDigest类是适合于产生任意数据的“单向散列”。
public class GenerateId {
public static void main(String... arguments) {
try {
SecureRandom prng = SecureRandom.getInstance("SHA1PRNG");
String randomNum = Integer.valueOf(prng.nextInt()).toString();
MessageDigest sha = MessageDigest.getInstance("SHA-1");
byte[] result = sha.digest(randomNum.getBytes());
System.out.println("Random number: " + randomNum);
System.out.println("Message digest: " + hexEncode(result));
} catch (NoSuchAlgorithmException ex) {
System.err.println(ex);
}
}
static private String hexEncode(byte[] input) {
StringBuilder result = new StringBuilder();
char[] digits = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a',
'b', 'c', 'd', 'e', 'f'};
for (int idx = 0; idx < input.length; ++idx) {
byte b = input[idx];
result.append(digits[(b & 0xf0) >> 4]);
result.append(digits[b & 0x0f]);
}
return result.toString();
}
}
结果为
Random number: -2017013782
Message digest: 2c3bba8d4dbd3699648c5909685d21f9c64b6a8a
Twitter的snowflake
twitter的一个全局唯一id生成器,结果是一个long型的ID。
正数位(1bit):一个符号位,永远是0。
时间戳(41bit) :自从2012年以来的毫秒数,能撑139年。
自增序列(12bit,最大值4096):毫秒之内的自增,过了一毫秒会重新置0。
DataCenter ID (5 bit, 最大值32):配置值,支持多机房。
Worker ID ( 5 bit, 最大值32),配置值,一个机房里最多32个机器。
Snowflake算法的变化
Snowflake算法生成的唯一ID为long型数值,但如果想在应用中使用int类型的自增ID的话可以做些调整。
时间戳改为分钟(25bit),自增序列(7bit)。自增序列最大值128,在一分钟内会不够使用。可以采用预支方式取下一分钟。
此方式只适用于一个单体应用,不适合分布式系统。
/**
* @ClassName: SnowflakeIdWorker3rd
* @Description:snowflake算法改进
* @author: wanghao
* @date: 2019年12月13日 下午12:50:47
* @version V1.0
*
* 将产生的Id类型更改为Integer 32bit <br>
* 把时间戳的单位改为分钟,使用25个比特的时间戳(分钟) <br>
* 去掉机器ID和数据中心ID <br>
* 7个比特作为自增值,即2的7次方等于128。
*/
public class SnowflakeIdWorker3rd {
/** 开始时间戳 (2019-01-01) */
private final int twepoch = 25771200;// 1546272000000L/1000/60;
/** 序列在id中占的位数 */
private final long sequenceBits = 7L;
/** 时间截向左移7位 */
private final long timestampLeftShift = sequenceBits;
/** 生成序列的掩码,这里为127 */
private final int sequenceMask = -1 ^ (-1 << sequenceBits);
/** 分钟内序列(0~127) */
private int sequence = 0;
private int laterSequence = 0;
/** 上次生成ID的时间戳 */
private int lastTimestamp = -1;
private final MinuteCounter counter = new MinuteCounter();
/** 预支时间标志位 */
boolean isAdvance = false;
// ==============================Constructors=====================================
public SnowflakeIdWorker3rd() {
}
// ==============================Methods==========================================
/**
* 获得下一个ID (该方法是线程安全的)
*
* @return SnowflakeId
*/
public synchronized int nextId() {
int timestamp = timeGen();
// 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format(
"Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
if(timestamp > counter.get()) {
counter.set(timestamp);
isAdvance = false;
}
// 如果是同一时间生成的,则进行分钟内序列
if (lastTimestamp == timestamp || isAdvance) {
if(!isAdvance) {
sequence = (sequence + 1) & sequenceMask;
}
// 分钟内自增列溢出
if (sequence == 0) {
// 预支下一个分钟,获得新的时间戳
isAdvance = true;
int laterTimestamp = counter.get();
if (laterSequence == 0) {
laterTimestamp = counter.incrementAndGet();
}
int nextId = ((laterTimestamp - twepoch) << timestampLeftShift) //
| laterSequence;
laterSequence = (laterSequence + 1) & sequenceMask;
return nextId;
}
}
// 时间戳改变,分钟内序列重置
else {
sequence = 0;
laterSequence = 0;
}
// 上次生成ID的时间截
lastTimestamp = timestamp;
// 移位并通过或运算拼到一起组成32位的ID
return ((timestamp - twepoch) << timestampLeftShift) //
| sequence;
}
/**
* 返回以分钟为单位的当前时间
*
* @return 当前时间(分钟)
*/
protected int timeGen() {
String timestamp = String.valueOf(System.currentTimeMillis() / 1000 / 60);
return Integer.valueOf(timestamp);
}
// ==============================Test=============================================
/** 测试 */
public static void main(String[] args) {
SnowflakeIdWorker3rd idWorker = new SnowflakeIdWorker3rd();
for (int i = 0; i < 1000; i++) {
long id = idWorker.nextId();
System.out.println(i + ": " + id);
}
}
}
public class MinuteCounter {
private static final int MASK = 0x7FFFFFFF;
private final AtomicInteger atom;
public MinuteCounter() {
atom = new AtomicInteger(0);
}
public final int incrementAndGet() {
return atom.incrementAndGet() & MASK;
}
public int get() {
return atom.get() & MASK;
}
public void set(int newValue) {
atom.set(newValue & MASK);
}
}
————————————————
版权声明:本文为CSDN博主「peterwanghao」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/peterwanghao/article/details/103615746
郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。